If you have been following African issues on social media, you have probably come across a surge in anti-France sentiment in the Francophone zone, sometimes echoed in the Anglophone zone too. At the center of this sentiment is the common currency (known as the FCFA, or CFA) that 14 countries share.
For some time, the sub-Saharan Francophone youth have been dancing to the rhythms of the anti-CFA drums, hammered by some Francophone African economists.
CONTINUE READING
Introduction In this post, I will scrape the 2018 State of the State Addresses (SoSAs), convert the speeches into a dataframe of words counts with the rows representing the speeches and the columns representing the words. This type of dataframe is known as document term matrix (dtm). I will also perform some exploratory analysis of the constructed dataset.
Every year, at the beginning of the year, most U.S governors present their visions for their states in their SoSAs.
CONTINUE READING
Introduction Whenever I give a talk on topic modeling to people not familiar with the subject, the usual question I receive is: “can you provide some intuition behind topic modeling?” Another variant of the same question is: “This is magic. How can the computer identify the topics in the documents?”. No! It is not magic. It is Math. I presented the math behind Latent Dirichlet Allocation, and an example apllication in previous posts.
CONTINUE READING
Introduction My work involves the use and the development of topic modeling algorithms. A surprising challenge I have had is communicating the output of topic modeling algorithms to people not familiar with text analytics. Here is my 10 cents explanation of the LDA output to my econ friends.
The use of text data for economic analysis is gaining attractions. One popular analytical tool is Latent Dirichlet Allocation (LDA), also called topic modeling (Blei, Ng, and Jordan 2003).
CONTINUE READING
Introduction My work involves the use and the development of topic modeling algorithms. A surprising challenge I have had is communicating the output of topic modeling algorithms to people not familiar with text analytics. Here is my 10 cents explanation of the LDA output to my econ friends.
The use of text data for economic analysis is gaining attractions. One popular analytical tool is Latent Dirichlet Allocation (LDA), also called topic modeling (Blei, Ng, and Jordan 2003).
CONTINUE READING
Introduction An important development of text analytics is the invention of the Latent Dirichlet Allocation (LDA) algorithm (also called topic modeling) in 2003. LDA is non negative matrix factorization algorithm. A matrix factorization consists of decomposing a matrix into a product of two or more matrices. It turned out that these linear algebra techniques have applications for data analysis. These applications are generaly referred as data dimension reductions methods. Examples of matrix factorization methods in statistics include Factor Analysis, Principal Component Analysis, and Latent Dirichlet Allocation.
CONTINUE READING